A cross section of the retina, about midway between the fovea and far periphery, where rods are more numerous than cones. From top to bottom is about one-quarter millimeter. Because the rods and cones are at the back of the retina, the incoming light has to go through the other two layers in order to stimulate them. We do not fully understand why the retina develops in this curious backward fashion. One possible reason is the location behind the receptors of a row of cells containing a black pigment, melanin (also found in skin). Melanin mops up the light that has passed through the retina, keeping it from being reflected back and scattering around inside the eye; it has the same function as the black paint inside a camera. The melanin- containing cells also help chemically restore the light- sensitive visual pigment in the receptors after it has been bleached by light (see Chapter 8). For both functions, the melanin pigment must be close to the receptors. If the receptors were at the front of the retina, the pigment cells would have to be between them and the next layer of nerve cells, in a region already packed with axons, dendrites, and synapses. As it is, the layers in front of the receptors are fairly transparent and probably do not blur the image much. In the central one millimeter, however, where our vision is most acute, the consequences of even slight blurring would be disastrous, and evolution seems to have gone to some pains to alleviate it by having the other layers displaced to the side to form a ring of thicker retina, exposing the central cones so that they lie at the very front. The resulting shallow pit constitutes the fovea. Moving from back to front, we come to the middle layer of the retina, between the rods and cones and the retinal ganglion cells. This layer contains three types of nerve cells: bipolar cells, horizontal cells, and amacrine cells. Bipolar cells receive input from the receptors, as the diagram to the left shows, and many of them feed directly into the retinal ganglion cells. Horizontal cells link receptors and bipolar cells by relatively long connections that run parallel to the retinal layers; similarly, amacrine cells link bipolar cells and retinal ganglion cells. The layer of cells at the front of the retina contains the retinal ganglion cells, whose axons pass across the surface of the retina, collect in a bundle at the optic disc, and leave the eye to form the optic nerve. Each eye contains about 125 million rods and cones but only 1 million ganglion cells. In the face of this discrepancy, we need to ask how detailed visual information can be preserved.